Software Certification for Temporal Properties
with Affordable Tool Qualification

Songtao Xia and Ben Di Vito

Mail Stop 130
NASA Langley Research Center
Hampton, VA 23281
{s.xia, b.l.divito}@larc.nasa.gov

Abstract. It has been recognized that a framework based on proof-
carrying code (also called semantic-based software certification in its
community) could be used as a candidate software certification process
for the avionics industry. To meet this goal, tools in the “trust base” of a
proof-carrying code system must be qualified by regulatory authorities.
A family of semantic-based software certification approaches is described,
each different in expressive power, level of automation and trust base.
Of particular interest is the so-called abstraction-carrying code, which
can certify temporal properties. When a pure abstraction-carrying code
method is used in the context of industrial software certification, the
fact that the trust base includes a model checker would incur a high
qualification cost. This position paper proposes a hybrid of abstraction-
based and proof-based certification methods so that the model checker
used by a client can be significantly simplified, thereby leading to lower
cost in tool qualification.

1 Introduction

Safety critical programs, such as those controlling an airplane, a nuclear power
plant, or a medical system, are subject to the highest level of verification and
validation (V & V) effort, which is often outlined by administrative authorities.
For example, to deploy an autopilot program onboard an aircraft, the vendor
must supply evidence to a Federal Aviation Administration (FAA) representative
that shows compliance to FAA’s guidelines [11]. The certification process used
in the aviation industry currently relies heavily on peer review and testing.
Many properties of a software product, such as correctness, or general as
well as domain-specific safety, may be proven via deduction, synthesis, or other
techniques [10,1,9,5]. If the vendor proves the property and presents the proof
to the FAA representative, the representative may check the proof and conclude
that the system is indeed safe or correct relative to a specification. Such a scheme
is known as proof-carrying code. In a general setting, the vendor may not have
to provide a proof, but some intermediate, semantic-based objects (collectively
called a certificate) that help to establish the proof. The generalized category of
approaches is known as semantic-based software certification. The soundness of



2 Xia and Di Vito

such a framework, however, is based on the assumption that programs consti-
tuting the “trust base” are correctly implemented.

Semantic based software certification was originally designed for the safe dis-
tribution of software in an untrusted environment. The approach can be adapted
to software certification in avionics and other industries. A significant gap be-
tween research and industrial practice is the lack of qualified tools.!.

It is necessary to distinguish two sets of tools. Besides the trust base, there
are often other tools involved in a semantic-based software certification/re-
verification process. Naturally, the tools in the trust base should be more strictly
scrutinized because their failure can allow errors to propagate to final products.
It is expected that tools in the trust base will incur higher cost during qualifi-
cation because of their higher criticality.

This suggests the need for architectural principles for designing tools to
achieve desired trust goals. Choosing an optimal partitioning of components
into trusted and untrusted sets becomes an important decision. Considering the
high cost of qualification, the functionality needs to be decomposed in a way
such that the combined cost of qualifying the tools is minimal.

Thus, the problem of selecting tools to qualify is a choice among approaches
that have the required expressive power and trust attributes, and also allow a de-
composition of the functionality that incurs acceptable qualification cost. Of par-
ticular interest in this paper is the case of abstraction-carrying code[14], which
certifies temporal properties. Its trust base contains a model checker, which is
an additional component beyond those of most other certification methods.

2 Abstraction-Carrying Code

In a sense, the concept of semantic-based program certification can be under-
stood as decomposed program verification. Consider a vacuous program certifi-
cation technique, where the certificate contains nothing. In this case, the regu-
latory authority (represented by and referred to hereafter as a DER, Designated
Engineering Representative) has to verify the program on her own. If hints, for
example, a loop invariant, are provided by the vendor, the DER is relieved of
discovering this fact. But she needs to reverify that the loop invariant is indeed
a loop invariant. On the trust base side, a data-flow analyzer that she may trust
is now replaced by a simpler data-flow fact verifier. Because simpler programs
are less expensive to qualify, and because we have assumed that a tool in the
trust base requires a stricter, more expensive qualification process, the setting
in which the vendor provides such a hint is beneficial in terms of tool qualifica-
tion cost. As a principle, we should exploit this trade-off between the amount
of information (size of certificate) provided by the vendor and the complexity of
the trust base.

Traditionally, semantic-based program certification is proof-based. In theory,
this scheme works for any properties that can be formalized in the underlying

1 Other issues include, and are not limited to, recognition, training, and expressive
power /tool support.



Qualifiable Model Checkers 3

logic. And in practice, proofs can be generated for many safety properties even
if approaches other than theorem proving are used. However, sometimes for
general temporal properties, generating a proof may not be feasible. A different
paradigm based on abstraction-carrying code is proposed. Table 2 lists several
different, real or imaginary certification settings with their expressive power and
associated trust base.

Certification Method Properties Trust Base
Null Certificate provable properties every tool needed for proving
Touchstone type and memory safety|VCGen and proof checker
AutoBayes domain specific safety |VCGen and proof checker

and memory safety
Any proof provable properties VCGen and proof checker
Abstraction-carrying code|temporal properties VCGen, proof checker

and model checker

The first row in the table refers to the no-certificate situation. The second
row roughly corresponds to the setting of the original PCC work by Necula and
Lee [10], where type safety and memory safety is of concern, where the trust
base contains a verification condition generator (VCGen) and a proof checker.
Row 3 represents the application of PCC techniques in the verification of domain-
specific properties. For example, work by Denney et. al., automatically generates
programs with proof-carrying code style proofs for domain specific safety prop-
erties[5]. Row 4 corresponds to the setting where the client uses a proof assistant
(and probably a lot of human effort) to prove properties of concern.

Our focus is on Row 5, which corresponds to the abstraction-carrying code
research by Xia and Hook. The idea is to apply predicate abstraction [6] and
model checking to a program to verify an LTL property. Predicate abstraction
may be automated by adopting counter-example driven predicate discovery [2,4].
In this process, a predicate abstraction of the program is generated and passed
to a DER. A DER will first verify that the abstract model is faithful to the
program and then verify that the property does hold on the abstract model.
The faithfulness check can be implemented much the same way as in PCC, that
is, via a VCGen and a proof checker.

The proof-carrying code literature has elaborated how the VCGen and proof
checker may be constructed in a simple manner. For example, a typed assembly
language approach [8] can adopted for VCGen construction and a higher order
logic framework [10] is used in proof checking. Our research is focused on how
to restructure a model checker to achieve similar results.

3 Qualifiable Model Checkers

One of the initial design goals of abstraction-carrying code is to reduce the size
of the certificate because of the need to transport it and check it at run time. In



4 Xia and Di Vito

certifying for administrative approval, however, size is not an important factor.
There are approaches that generate proofs for certain sub-categories of proper-
ties after predicate abstraction/model checking[9, 7]. But such an approach may
not be feasible for general LTL formulas. Therefore, the ability of abstraction-
carrying code to certify temporal properties is still useful. In ACC, the trust base
includes a model checker, which is absent from PCC. We are going to explore
the trade-off between certificate size and complexity of the trust base to build a
more cost-effectively qualifiable model checker.

The model checker to be used by a DER in abstraction-carrying code is differ-
ent from a general purpose model checker: it checks an abstract model known as
a Boolean program (BP)[3]. A typical BP statement tests if a propositional for-
mula holds given an environment, represented as another propositional formula,
and changes the state accordingly. Compared to a model checker for a target
program, for example, the Java Pathfinder [13], the model checker for a Boolean
program does not need to handle the semantics of the object language. In con-
trast, more than half of the code in Java Pathfinder implements the semantics
of a virtual machine.

Still, this model checker is a fairly complicated program. For example, Moped
[12], contains 10 K lines of C code, not counting the supporting BDD library.
To reduce the size of this model checker while still achieving the requirements
of re-verification, we resort to the tools that already exist in the trust base: the
VCGen and the proof checker. Specifically, we use a hybrid approach to reuse
some of the model checking work that would be performed by the vendor during
the original analysis. This tool can be more complicated because it is not in the
trust base. We enhance the vendor’s model checker to record every transition
made by the model checker. That is, for a transition (a BP statement ¢) that
moves the system state (represented as a propositional formula) from s; to sq, we
note down the triple (s1,t, s2). Then the reduced model checker does not have to
compute s9, but just verify that ¢(s1) is so. Further, because the application of ¢
to a state can be reduced to the test of satisfiability in propositional logic, we may
simply keep a record of the piece of evidence that a proposition can be satisfied.
This way, we can replace the SAT solver, or the BDD package used in the model
checker with a Boolean evaluator. The DER will run this reduced model checker,
which, when a satisfiability problem in the Boolean domain is needed, will just
verify the proof presented by the vendor. In this way, the semantic engine needed
to analyze the Boolean program is simplified.

We are at the very early stage of this investigation. We are aware that the
complexity of the trust base is only one of the many factors involved in tool
qualification. Still, we expect to build a prototype system that can be plugged
into our previous implementation of an ACC system called ACCEPT/C and
evaluate the effective of this reduced model checker. This will allow exploration
of the primary trade-off: delivering more detailed evidence at certification time
in exchange for the benefits of reduced-complexity verification tools.



Qualifiable Model Checkers 5

References

1.

2.

10.
11.

12.

13.

14.

A. Appel. Foundational Proof-carrying Code. In Proceeding of 16th IEEE Sympo-
situm on Logics in Computer Science (LICS), June 2001.

T. Ball. Formalizing counter-example driven predicate refinement with weakest
preconditions. Technical Report MSR-TR-2004-134, Microsoft Research, 2004.

T. Ball and S. Rajamani. Automatically Validating Temporal Safety Properties of
Interfaces. In SPIN2001, Lecture Notes in Computer Science 2057, pages 103—-122.
Springer-Verlag, May 2001.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In Proceedings of the Conference on Computer Aided
Verification (CAV), pages 154-169, 2000.

E. Denney and B. Fischer. Certifiable program generation. In Proceedings of
Generative Programming and Component Engineering, 2005.

S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Pro-
ceedings of Conference on Computer Aided Verification (CAV) 97, Lecture Notes
in Computer Science 1254, pages 72-83, Haifa, Israel, June 1997. Springer-Verlag.
T. Henzinger, R. Jhala, R. Majumdar, G. Necula, G. Sutre, and W. Weimer.
Temporal-Safety Proofs for Systems Code. In Proceedings of Conference on
Computer-Aided Verification (CAV), pages 526-538, 2002.

. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed As-

sembly Language. ACM Transactions on Programming Languages and Systems,
21(3):527-568, 1999.

K. S. Namjoshi. Certifying Model Checkers. In Proceedings of 13th Conference on
Computer Aided Verification (CAV), 2001.

G. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University, 1998.
RTCA SC-167 and EUROCAE WG-12. Software considerations in airborne sys-
tems and equipment certification, December 1992.

S. Schwoon. Moped software. Available at http://wwwbrauer.informatik.tu-
muenchen.de/”~ schwoon/moped/.

W. Visser, S. Park, and J. Penix. Applying Predicate Abstraction to Model Check
Object-oriented Programs. In Proceedings of the 33rd ACM SIGSOFT Workshop
on Formal Methods in Software Practice.

S. Xia. Abstraction-based Certification of Temporal Properties of Software Modules.
PhD thesis, OGI School of Science and Engineering, Oregon Health and Science
University, 2004.



